Def. 8.9 For $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$, the norm $\|A\|_{2}$ is often called the spectral norm.
A few technical inequalities:
Prop. $8.8 / 8,11$ Let $\left\|\|\right.$ be any matrix norm, and let $\beta \in \mathbb{C}^{n \times n}$ s.t. $\| B \|<1$,
(1) If II II is a subordinate matrix norm, then $I+B$ is invertible and

$$
\left\|(I+B)^{-1}\right\| \leq \frac{1}{1-\|B\|}
$$

(\{) If a matrix of the form $I+B$ is singular, then $\|B\| \geq 1$ for every matrix norm.
proof. (1) If $(I+B)_{u}=0$, then $B_{u}=-u \Rightarrow\|u\|=\|B u\|$.
But $\|B u\| \leq\|B\|\|u\|$ for every rubordhate norm.
Since $\|B\|<1$, if $u \neq 0$, then $\left\|B_{u}\right\|<\|u\|$, a contradiction.
$\Rightarrow u=0$ if $(I+B) u=0,20 \quad I+B$ is invertible,
Then $I=(I+B)(I+B)^{-1}=(I+B)^{-1}+B(I+B)^{-1}$.

$$
\begin{aligned}
& \Rightarrow(I+B)^{-1}=I-B(I+B)^{-1} \\
& \Rightarrow\left\|(I+B)^{-1}\right\| \leq 1+\|B\|\left\|(I+B)^{-1}\right\| \\
& \Rightarrow\left\|(I+B)^{-1}\right\| \leq \frac{1}{1-\|B\|} .
\end{aligned}
$$

(2) If $I+B$ is singular, then -1 is an eigenake of B, and rcc-l $e(B) \leq\|B\| \Rightarrow 1 \leq \rho(B) \leq\|B\|$. spectral rathe

We will nod the following to deal with convergence of sequences of matrix powers Prop. 8.9/8.12 $\forall A \in \mathbb{C}^{n \times n}, \forall \varepsilon>0, \exists$ a subordinate matrix norm II II s.t. $\|A\| \leq \rho(A)+\varepsilon$.
proof. Recall the Suhur decomposition, stating that
$n=\|T\|^{-1}$.. where U is a unitary matrix and T is upper triangulacy
proof. Recall the Suhur decomposition, stating that
$A=U T U^{-1}$, where U is a unitary matrix and T is upper triangulacs. Say

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & t_{12} & t_{13} & \ldots \\
& \lambda_{2} & t_{1 n} \\
0 & \ddots & \vdots \\
0 & & \ddots & t_{n-1, n}
\end{array}\right) \text {, where } \lambda_{1}, \ldots, d_{n} \text { are eigenvalues. }
$$

For every $\delta \neq 0$, define

$$
D_{\delta}=\operatorname{diag}\left(1, \delta, \delta^{2}, \cdots, \delta^{n-1}\right)
$$

Then

$$
\left(U D_{\delta}\right)^{-1} A\left(u D_{\delta}\right)=D_{\delta}^{-1} T D_{\delta}=\left(\begin{array}{cccc}
\lambda_{1} & \delta t_{12} & \delta^{2} t_{13} & \cdots \\
& \delta^{n-1} t_{1 n} \\
& \lambda_{2} & \ddots & \vdots \\
& \ddots & \vdots & \\
& & \ddots & t_{n-1, n} \\
& & & \lambda_{n}
\end{array}\right)
$$

We now construct $\left\|\|=\mathbb{C}^{n \times n} \rightarrow \mathbb{R}\right.$ by defining

$$
\|B\|=\left\|\left(U D_{\delta}\right)^{-1} B\left(U D_{\delta}\right)\right\|_{\infty},
$$

Which is the matrix norm subordinate to the vector norm

$$
v \mapsto\left\|\left(U D_{\delta}\right)^{-1} v\right\|_{\infty}
$$

$$
\begin{aligned}
& \forall \varepsilon>0, \text { pick } \delta \text { sit. } \sum_{j=i+1}^{n}\left|\delta^{j-i} t_{i j}\right| \leq \varepsilon, \quad \mid \leq i \leq n-1 \\
& \Rightarrow\|A\| \leq p(A)+\varepsilon . \quad \text { (because }\left\|\|_{\infty}\right. \text { is the maximum over) } \\
& e^{\prime}-n_{0} r_{m} \text { of rows }
\end{aligned}
$$

Condition numbers of matrices
Def 8.10 Fur any subordinate matrix norm 1111 , for any invertible A,

$$
\operatorname{cond}(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A relative t. II II.
Condition numbers measure the sensitivity of the linear system $A_{x}=b$ the variations in A and b.

Condition numbers masure the sersinvily of pre … to variations in A and b.

Prop. 8.10/8.13 Let A be an invertible matrix and let

$$
\begin{gathered}
A x=b \\
A(x+\Delta x)=b+\Delta b .
\end{gathered}
$$

If $b \neq 0$, then

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \cdot \frac{\|\Delta b\|}{\|b\|}
$$

Further, for a given $A, \exists b \neq 0$ and $\Delta b \neq 0$ for which equality holds
proof.

$$
\begin{aligned}
& \Delta x=A^{-1} \Delta b . \\
& \Rightarrow\|\Delta x\| \leq\left\|A^{-1}\right\|\|\Delta b\| \\
& \Rightarrow \quad\|b\| \leq\|A\|\|x\| \\
& \Rightarrow \quad \frac{\|\Delta x\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\Delta b\|}{\|A\|}=\left(\|A\|\left\|A^{-1}\right\|\right) \cdot \frac{\|\Delta b\|}{\|b\|} . \\
&=\operatorname{cond}(A) \cdot \frac{\|b\|}{\|x\|} \leq \frac{\|A\|}{\|b\|} \\
&\|b\|
\end{aligned}
$$

Now just need to exhibit $b \neq 0$ ad $o b \neq 0$ sit. we get equality.
Becawse IIII is a subordinate matrix norm, $\exists x \neq 0$ an $\perp \Delta b \neq 0$ st.

$$
\left\|A^{-1} \Delta b\right\|=\left\|A^{-1}\right\|\|\Delta b\| \quad \text { and } \quad\|A x\|=\|A\|\|x\| .
$$

(since subordinate matrix norms can be defried as
supremums over closed unit balls
Then $\frac{\|\Delta x\|}{\|x\|}=\frac{\|A\|\left\|\Delta x^{\|}\right\|}{\|A\|\|x\|}=\frac{\|A\|\left\|A^{-1} \Delta b\right\|}{\|A x\|}=\frac{\|A\|\left\|A^{-1}\right\|\|\Delta b\|}{\|b\|}$.
Above, we have perturbed b. We can similarly perturb A.
Prof. 8.118 .14 let A be an ipuertible matrix, and let

$$
\begin{gathered}
A x=b \\
(A+\Delta A)(x+\Delta x)=b .
\end{gathered}
$$

$$
11 \text { 人 } A / 1 \quad 111 \text {, A than }
$$

$$
(A+\Delta A)(x+\Delta x)=0 .
$$

If $b \neq 0$, then $\frac{\|\Delta x\|}{\|x+\Delta x\|} \leq \operatorname{cond}(A) \cdot \frac{\|\Delta A\|}{\|A\|}$ holds and is the best possible

Basically, the condition number tells us how sensitive the system $A x=b$ is to perturbations under II II.
Def. 8.ll Given a complex $n \times n$ matrix A, a triple (U, V, Σ) such that $A=V \sum U^{\top}$, where U and V are $n \times n$ unitary matrices and $\sum=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a diagonal matin of singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ is called a singular value decomposition (SVD) of A. If A is real, then U and V are orthogonal matrices.
Preview: Chapter 20: every real or complex rectangular matrix has an SVD. (Nice geometric interpretation that we will cover after adjoint and spectral theorems).

Note: $A=V \Sigma U^{*} \Rightarrow A^{*} A=U \Sigma^{2} U^{*}$ and $A A^{*}=V \Sigma^{2} V^{*}$
$\Rightarrow \sigma_{1}{ }^{2}, \ldots, \sigma_{n}{ }^{2}$ are eigenvalues of both $A^{*} A$ and $A A^{*}$.
\Rightarrow cols of U are eigenvectors for $A^{*} A$.
cols of V are eigenvectors for $A * A$.

$$
\Rightarrow \sqrt{\rho\left(A^{*} A\right)}=\sqrt{\rho\left(A A^{*}\right)}=\sigma_{1} .
$$

Corollary 8.3/8.15 $\|A\|_{2}=\sigma_{1} \quad$ (spectral norm is equal to largest sing. val.)

$$
=\left\|\left(\sigma_{1}, \ldots, \sigma_{n}\right)\right\|_{\infty}
$$

Corollary $8.4 / 8.16 \quad\|A\|_{F}=\sqrt{\operatorname{tr}\left(A^{*} A\right)}=\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}}=\left\|\left(\sigma_{1}, \ldots, \sigma_{n}\right)\right\|_{2}$.
Prop. 8.12/8.17 For any invertible $A \in \mathbb{C}^{n \times n}$,
(b eave $\quad 1=\|I\| \leq\|A\|\left\|A^{-1}\right\|=\operatorname{cond}(A)$)
(1) $\operatorname{cond}(A) \geq 1$

$$
\text { Fond }(A)=\operatorname{cond}\left(A^{-1}\right)
$$

(1) cons (1) - ,
$\operatorname{cond}(A)=\operatorname{cond}\left(A^{-1}\right)$
$\operatorname{cond}(\alpha A)=\operatorname{cond}(A) \quad \forall \alpha \in \mathbb{C}-\{0\}$.
(2) Let $\operatorname{cond}_{2}(A)$ be the condition number of A w.r.t. the spectral norm.

Then $\operatorname{cond}_{2}(A)=\frac{\sigma_{2}}{\sigma_{n}}$.
(3) If A is normal (i.e. $A A^{*}=A^{*} A$), then

$$
\operatorname{cond}_{2}(A)=\frac{\left|\lambda_{1}\right|}{\left|\lambda_{n}\right|},
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues, sorted, that $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \ldots \geq\left|\lambda_{n}\right|$.
(4) If A is a unitary or orthogonal matrix, then $\operatorname{cond} 2(A)=1$.

$$
(5) \operatorname{cond}_{2}(A)=\operatorname{cond}_{2}(U A)=\operatorname{cond}_{2}(A v) \quad \forall \text { unitary } U, V \text {. }
$$

We very offer care about unitary lorthogonal matrices since they are extremely well-condifioned for the spectral nom (indeed, they are "length-preserving").

Geometric interpretation
$\operatorname{cond}_{2}(A)=\cot \left(\frac{\theta(A)}{2}\right)$, where $\theta(A)$ is the smallest angle between Au and Av, where u, v are orthonormal vectors.

Caution: It's tempting to think of conditun number cord as rebated to eigenvalues. However, this B only true for normal matrices, Consider $A=\left(\begin{array}{cccc}1 & 2 & & 0 \\ 1 & 2 & 0 \\ 0 & 1 & \ddots & 2 \\ 0 & & 1\end{array}\right)$, with $\operatorname{cond}_{2}(A) \geq 2^{n-1}$.

Or a Hilbert matrix $H_{i j}^{(n)}=\left(\frac{1}{i+j-1}\right)$. $\quad \operatorname{cond}_{2}\left(H^{(n)}\right)=O\left(\frac{(1+\sqrt{2})^{4 n}}{\sqrt{n}}\right)$.

